LISTADO DE FIGURAS

Figura 1.1	Representación gráfica del efecto de los dispositivos	
	FACTS	.32
Figura 1.2	Diagrama esquemático de un controlador serie	.33
Figura 1.3	Diagrama esquemático de un controlador en derivación	.34
Figura 1.4	Diagrama esquemático de un controlador serie-serie	.34
Figura 1.5	a) Controlador coordinado serie-paralelo	.35
	b) Controlador unificado serie-paralelo	.35
Figura 1.6	Diagrama esquemático de una fuente de voltaje	
	síncrona (VSC)	.38
Figura 2.1	a) Símbolo del diodo	.44
	b) Construcción esquemática de un diodo semiconductor	. 44
	c) Representación simple	.44
Figura 2.2	Curva voltaje-corriente típica de un diodo semiconductor	. 45
Figura 2.3	Diodos rectificadores de potencia	.45
Figura 2.4	Señal rectificada de media onda	.48
Figura 2.5	Señal rectificada onda completa	.48
Figura 2.6	Rectificador monofásico onda completa (transformador	
	con derivación central)	.50
Figura 2.7	Rectificador monofásico onda completa (puente de diodos	
	completo)	.50
Figura 2.8	Formas de onda en rectificadores trifásicos	.51
Figura 2.9	Símbolo del SCR	.52
Figura 2.10	Analogía de un SCR con dos transistores bipolares	.53
Figura 2.11	Curva característica de un tiristor	.54
Figura 2.12	Disparo por corriente continua	.55
Figura 2.13	Disparo por fase alterna	.55
Figura 2.14	Disparo por transformador de pulsos	.56

Figura 2.15	Disparo por acoplamiento óptico	56
Figura 2.16	a) Equivalente esquemático de un IGBT	
-	con MOSFET y BJT	58
	b) Símbolo del IGBT	58
Figura 3.1	Módulo básico de un TCSC	64
Figura 3.2	TCSC inserto en una línea de transmisión	66
Figura 3.3	Sistema en modo de bloqueo	67
Figura 3.4	Sistema en modo de conducción	68
Figura 3.5	Sistema sin conducción de tiristores	70
Figura 3.6	Formas de onda al momento de insertar el TCSC	77
Figura 3.6	a) Formas de onda para $R_t = 0\Omega$	77
Figura 3.6	b) Formas de onda con $R_t = 1\Omega$	78
Figura 3.6	c) Formas de onda con $R_t = 10\Omega$	79
Figura 3.7	Ciclo de trabajo del TCSC	79
Figura 3.8	Respuesta del TCSC operando en modo Vernier	81
Figura 3.9	Sistema de compensación en una sola fase	82
Figura 3.10	Comportamiento del TCSC en el espacio de estados	83
Figura 3.11	a) Comportamiento en el espacio de estados	84
	b) Plano Σ	84
Figura 3.12	Dinámica del TCSC sobre un periodo	85
Figura 3.13	Sistema de Kayenta	93
Figura 3.14	Valores propios del Jacobiano del mapa de Poincaré	
	en el plano z	94
Figura 3.15	Valores propios con $T= 1/30$ en el plano z	94
Figura 3.16	Plano de estados y puntos de Poincaré para el caso 2	95
Figura 3.17	Valores propios del jacobiano del mapa de Poincaré	
	en el plano z	95
Figura 3.18	Valores propios para el sistema de Kayenta	
	en el plano z	97
Figura 4.1	Un polo inversor y su voltaje de salida	100
Figura 4.2	Puente inversor monofásico	101
Figura 4.3	Formas de onda para un puente VSC monofásico	102
Figura 4.4	Puente trifásico elemental	103
Figura 4.5	Señales de disparo para el puente de seis pulsos	104
Figura 4.6	Voltajes de línea-neutro del VSC seis pulsos	104
Figura 4.7	Voltajes de línea-línea del VSC seis pulsos	105
Figura 4.8	Arreglo del inversor de doce-pulsos	107
Figura 4.9	a) $v_{ab}(t)$ y $v_{abY}(t)$; b) voltaje de doce-pulsos	108
Figura 4.10	Inversor de dos, tres, y cuatro niveles	108
Figura 4.11	Inversor multinivel de tres estados, configuración	
	diodo-anclado	109

Figura 4.12	Inversor multinivel de tres estados, configuración diodo anclado nivel $\pm V/2$ 110
Figura 4.13	Inversor multinivel de tres estados, configuración
	diodo anclado, nivel 0110
Figura 4.14	Inversor multinivel de tres estados, configuración
	<i>diodo anclado</i> , nivel -V/2111
Figura 4.15	Señales de control y señal de salida del inversor
	de tres estados, configuración diodo anclado111
Figura 4.16	Inversor de cinco niveles, configuración
	diodo anclado112
Figura 4.17	Inversor de cinco niveles, configuración
	diodo anclado112
Figura 4.18	Inversor de tres niveles, configuración
	capacitor anclado114
Figura 4.19	Inversor de tres niveles configuración
	<i>capacitor-anclado</i> , nivel +V/2114
Figura 4.20	Inversor de tres niveles configuración
	capacitor-anclado, nivel -V/2115
Figura 4.21	Inversor de tres niveles, configuración capacitor-
	anclado, nivel cero - caso 1115
Figura 4.22	Inversor de tres niveles, configuración capacitor-
	anclado, nivel cero - caso 2116
Figura 4.23	Señales de control del inversor capacitor-anclado
	de 3 niveles117
Figura 4.24	Inversor de cinco niveles, configuración capacitor-
	anclado, conexión cara a cara117
Figura 4.25	Principio de la modulación senoidal con onda
	portadora triangular118
Figura 4.26	Forma de onda PWM que se obtiene utilizando
	SPWM con muestreo natural, p=12, M=0.75119
Figura 4.27	Formas de onda de voltaje para un inversor
	trifásico SPWM120
Figura 4.28	Valor RMS del voltaje fundamental de línea relativo
	a V_{CD} contra la relación de modulación para SPWM121
Figura 4.29	Sobremodulación en SPWM122
Figura 4.30	Saltos de voltaje debidos a la sobremodulación122
Figura 4.31	Esquema SPWM de muestreo regular simétrico123
Figura 4.32	Esquema SPWM de muestreo regular asimétrico124
Figura 5.1	Diagrama esquemático del StatCom128
Figura 5.2	Inversor elemental
Figura 5.3	Inversor de seis pulsos con carga resistiva130
Figura 5.4	Señales de disparo131

Figura 5.5	Voltajes línea-línea	131
Figura 5.6	Secuencia 1-5-6	132
Figura 5.7	Secuencia 1-2-6	132
Figura 5.8	Secuencia 1-2-3	132
Figura 5.9	Voltajes línea-neutro	133
Figura 5.10	Periodo de conducción - factor	
-	de potencia 0.5 inductivo	136
Figura 5.11	Periodo de conducción - factor	
-	de potencia 0.866 inductivo	137
Figura 5.12	Periodo de conducción - factor	
	de potencia cero	137
Figura 5.13	StatCom de seis pulsos	138
Figura 5.14	Entrega/absorción de reactivos	139
Figura 5.15	Relación entre voltaje V _{DC} y corrientes	140
Figura 5.16	Voltajes de la red y compensador	140
Figura 5.17	Formas de onda de la corriente	142
Figura 5.18	Periodo de conducción de Q ₁ y d	144
Figura 5.19	a) Corriente del capacitor generando	
	potencia reactiva	146
	b) Corriente del capacitor absorbiendo	
	potencia reactiva	146
Figura 5.20	a) Voltaje del capacitor generando	
	potencia reactiva	147
	b) Voltaje del capacitor absorbiendo	
	potencia reactiva	147
Figura 5.21	Voltajes línea-neutro y línea-línea,	
	con un capacitor finito	148
Figura 5.22	Corriente y voltaje del capacitor	149
Figura 5.23	Voltajes de la red y del inversor desfasados	150
Figura 5.24	Corriente CA cuando $\varphi = 15^{\circ}$	152
Figura 5.25	$i_{DC}(t)$ para $\varphi = 2^{\circ}$ y $\varphi = 15^{\circ}$	153
Figura 5.26	Circuito capacitivo de prueba	153
Figura 5.27	Voltaje instantáneo del capacitor modificado mediante	
	el desfasamiento φ	154
Figura 5.28	a) Corriente CA con $\varphi = 0^{\circ}$	155
	b) Corriente CA con $\varphi = -0.5^{\circ}$	155
Figura 5.29	a) $v_{ab}(t) \neq v_{aby2}(t)$	157
	b) voltaje de 12 pulsos	157
Figura 5.30	Arreglo del StatCom de 12 pulsos	157
Figura 5.31	Voltajes línea-neutro del StatCom de 12 pulsos	158
Figura 5.32	Espectro de Fourier para el voltaje $v_{ab12}(t)$	159
Figura 5.33	Diagrama fasorial: corrientes en adelanto y atraso	160

Figura 5.34	Relación entre el voltaje de CD y la corriente reactiva160
Figura 5.35	Voltaje fundamental del compensador
e	$v_{-}(t)$ y del sistema
Figura 5.36	Corriente $i_{i}(t)$
Figura 5.37	Corriente CA de cada inversor de seis pulsos166
Figura 5.38	Corriente en Q ₁ y D ₁
Figura 5.39	a) Corriente del primer inversor - generando
e	potencia reactiva
	b) Corriente del primer inversor - absorbiendo
	potencia reactiva
Figura 5.40	a) Corriente del segundo inversor - generando
e	potencia reactiva
	b) Corriente del segundo inversor - absorbiendo
	potencia reactiva
Figura 5.41	a) Corriente del capacitor - generando
-	potencia reactiva
	b) Corriente del capacitor - absorbiendo
	potencia reactiva
Figura 5.42	a) Voltaje del capacitor - generando
_	potencia reactiva170
	b) Voltaje del capacitor - absorbiendo
	potencia reactiva170
Figura 6.1	StatCom de seis pulsos174
Figura 6.2	Pierna de la fase <i>a</i> 174
Figura 6.3	Señales para el inversor de seis pulsos179
Figura 6.4	Señales para el inversor de 12 pulsos180
Figura 6.5	Señales para el inversor de 24 pulsos181
Figura 6.6	Señales para el inversor de 48 pulsos182
Figura 6.7	a) Corriente de fase - modelo de conmutación190
	b) Corriente de fase - modelo de frecuencia
	fundamental190
Figura 6.8	Corrientes i _d e i _a 190
Figura 6.9	Voltaje del capacitor191
Figura 7.1	Circuito representativo de un sistema radial194
Figura 7.2	Triángulo de potencias194
Figura 7.3	Curva PV considerando tan Φ =0.2197
Figura 7.4	Curvas PV para diferentes valores del factor
	de potencia198
Figura 7.5	Voltaje en función de la potencia activa
	y reactiva de carga199
Figura 7.6	Margen de estabilidad de voltaje de un SEP201
Figura 7.7	Estructura fundamental de un StatCom204

Figura 7.8	Funcionamiento básico de un StatCom	204
Figura 7.9	Característica V-I natural del StatCom	205
Figura 7.10	Característica V-I controlada del StatCom	206
Figura 7.11	Curvas características	207
Figura 7.12	Circuito equivalente de un StatCom trifásico	208
Figura 7.13	Diagrama esquemático del sistema de prueba	
e	de Nueva Inglaterra	212
Figura 7.14	Diagrama de flujo para establecer los parámetros	
e	de referencia	217
Figura 7.15	Desbalance aplicado a las cargas	218
Figura 7.16	Diagrama de flujo para el estudio	
e	de los casos trifásicos	220
Figura 7.17	Curva PV correspondiente al nodo 32 para el CBO	223
Figura 7.18	Resultados del análisis modal aplicado al sistema	
-	de Nueva Inglaterra	227
Figura 7.19	Curvas PV en el nodo 32	228
Figura 7.20	Magnitud de voltaje en los nodos de carga	229
Figura 7.21	Potencias totales de generación	230
Figura 7.22	Pérdidas totales en el sistema	230
Figura 7.23	Márgenes de estabilidad de voltaje trifásicos para	
-	el nodo 32, casos 2a y 2b	232
Figura 7.24	Márgenes por fases del nodo 32	234
Figura 7.25	Magnitud de voltaje en los nodos de carga por fase	235
Figura 7.26	Magnitud de voltaje en los nodos de la zona más débil	
-	del sistema, fase <i>a</i>	236
Figura 7.27	Pérdidas totales de potencia reactiva	237
Figura 8.1	Condición de operación de estado estacionario	242
Figura 8.2	Esquemas básicos TSSC y TCSC	243
Figura 8.3	Esquema básico del SSSC	243
Figura 8.4	Modelo de circuito del SSSC	244
Figura 8.5	Diagrama unifilar de Nueva Inglaterra incluyendo	
	un SSSC	247
Figura 8.6	Resultados de flujos de carga para el sistema	
	de prueba, caso SSSC	247
Figura 8.7	Configuración del inversor de 6-pulsos	249
Figura 8.8	Patrón de pulsos para el inversor de 6-pulsos	249
Figura 8.9	Configuración de inversor de 48-pulsos	252
Figura 8.10	a) Transformadores defasadores, b) en atraso,	
	c) en adelanto	253
Figura 8.11	V _{an48} , su contenido armónico y corriente	
	de línea fase a	254
Figura 8.12	SSSC inserto en un circuito inductivo	254

Figura 8.	13 Corriente del capacitor para un SSSC de 48-pulsos257
Figura 8.	14 Corriente del capacitor para un SSSC
-	de 48-pulsos con $\phi = 10^{\circ}$
Figura 8.	15 a) SSSC embebido en una línea de transmisión259
	b) circuito CD259
Figura 8.	16 Voltaje del capacitor, sus armónicos, y contenido
	armónico del SSSC de 48 pulsos262
Figura 9.	l Sistema de potencia simplificado de dos máquinas
	con un controlador de flujos de potencia generalizado266
Figura 9.	a) Diagrama fasorial de la operación del UPFC cuando se
	controla la magnitud del voltaje terminal y el ángulo de fase 268
	b) Diagrama fasorial de la operación del UPFC cuando
	se regula el voltaje terminal
	c) Diagrama fasorial de la operación del UPFC cuando
	se regula el voltaje terminal y la impedancia en línea268
	d) Diagrama fasorial de la operación del UPFC cuando
D' 0	se regula el voltaje terminal y el ángulo de fase
Figura 9.	3 Diagrama esquematico del UPFC
Figura 9. Σ°	Diagrama del circuito trifasico del UPFC
Figura 9.	Esquema general del UPFC
Figura 9.	Diagrama fasorial y areas de operación
Figura 9.	del LIDEC 272
Eiguro 0	Diagrama monofógios de una línea aquinada
Figura 9.	con un LIPEC 275
Figura 0	Detencia activa v reactiva del extremo emisor 277
Figura 9	10 Variaciones de Ps y Os como funciones de V
riguia 7.	$(V = 1.0 \text{ m} \ \delta = 160^{\circ})$ 278
Figura 0	$(v_{\rm E} 1.0 {\rm pu}, v_{\rm B} 100)$
Figura 7.	$(V = 0.3 \text{ m}) \delta = 160^{\circ}$ 270
Eiguro 0	$\left(v_{\rm B}^{-0.5} \text{ pu}, v_{\rm B}^{-100}\right)$
Figura 9.	avaitación y alevador como función de
	$V_{\rm c}(V = 0.2 \text{ m} + \delta = -160^{\circ})$
Eiguro 0	$v_{\rm E} (v_{\rm B} - 0.5 \mathrm{pu}, \theta_{\rm B} - 100 \mathrm{)}$ 200
Figura 9.	15 Sistema de control del OFFC
Figura 9.	auando al LIPEC no ostá an sorruicio
Figura 0	5 Potencia compleia del extremo emisor cuando el LIPEC
riguia 7.	está localizado en el extremo emisor cuando el OTTC
Figura Q	16 Región de la notencia compleia del extremo emisor
i iguia 9.	nara $\delta = 0^0 x \delta = 75^\circ$ cuando al LIDEC está localizado
	para $v = 0$ y $v = 75$ cuando el OFFC esta localizado en medio de la línea

Figura 9.17	Región de potencia compleja del extremo receptor	201
Eigung 0.19	Área tatal dal plana complaia que al LIDEC	204
Figura 9.18	Area total del plano complejo que el OPFC	205
E	Efecte de V cohre la región de control de la	283
Figura 9.19	Effecto de V_E sobre la region de control de la	205
D : 0.00	potencia compleja	285
Figura 9.20	a) Efecto de X_{E} sobre la región de la potencia	• • • •
	compleja en el extremo emisor	286
Figura 9.20	b) Efecto de X_E sobre la región de potencia compleja	• • •
	en el extremo receptor	287
Figura 9.21	Efecto de la región de localización del UPFC	
	del extremo emisor	287
Figura 9.22	Efecto de la localización del UPFC en el extremo	
	receptor	288
Figura 9.23	UPFC instalado en un sistema de potencia máquina	
	barra-infinita	291
Figura 9.24	Sistema máquina barra-infinita incluyendo un UPFC	291
Figura 9.25	Flujo de carga para el caso máquina-barra infinita	293
Figura 9.26	Diagrama de flujo del problema de flujos de potencia	
-	incluyendo un UPFC	298
Figura 9.27	Sistema de prueba de nueve nodos incluyendo UPFC	299
Figura 9.28	Modelo del sistema de potencia máquina-barra infinita	
e	con un controlador FACTS conectado en serie	300
Figura 9.29	Modelo del sistema de potencia máquina-barra infinita	
e	con un controlador FACTS conectado en derivación	302
Figura 9.30	Modelo del sistema máquina-barra infinita con	
0	un UPFC localizado en medio de la línea	304
Figura 10.1	Cambiador de frecuencia estático trifásico-trifásico	
Figura 10.2	Clases de cambiadores de frecuencia estáticos	
Figura 10.3	NCC trifásico-trifásico	.312
Figura 10.4	Controlador de voltaie	.314
Figura 10.5	Señales en el controlador de voltaie	.315
Figura 10.6	Controlador de voltaie de CA	.315
Figura 10.7	Voltaie en la carga	316
Figura 10.8	Sumador con transformadores	317
Figura 10.9	Representación vectorial de la suma de señales	
i iguiu 10.9	senoidales de la misma frecuencia	317
Figura 10.10	Sumador trifásico con PWM y carga resistiva	319
Figure 10.10	Voltaies de entrada al convertidor y señal de referencia	320
Figure 10.11	Diagrama a bloques del esquema de control	320
Figure 10.12	Obtención de las magnitudes	321
Figure 10.13	Las componentes imaginarias de Fo' y Va son iguelos	222 277
1 iguia 10.14	Las componentes imaginarias de l'el y va son iguales	

Figura 10.15	Descomposición vectorial de Fc'	323
Figura 10.16	Resta de las componentes reales de Fc' y Fa'	323
Figura 10.17	Va cuando IMa= 0.4, IMb= 0 e IMc= 0.4	324
Figura 10.18	Dos esquemas del convertidor monofásico matricial	326
Figura 10.19	Convertidor matricial trifásico	326
Figura 10.20	Convertidor matricial con acoplamiento simple	327
Figura 10.21	Esquema de un convertidor de CD conmutado	
	para el control de flujo de potencia	329
Figura 10.22	Esquema trifásico del VeSC	332
Figura 10.23	Circuito equivalente monofásico para el componente	
	fundamental del VeSC	335
Figura 10.24	VeSC trifásico de dos polos usando IGBT	336
Figura 10.25	Diagrama de bloques para Matlab-Simulink	336
Figura 10.26	Interruptor monopolar	337
Figura 10.27	Formas de onda de voltajes y corrientes	
	del convertidor	338
Figura 10.28	Convertidor con elementos de filtrado	338
Figura 10.29	Modelo en Matlab-Simulink con elementos de filtrado	339
Figura 10.30	Formas de onda de voltaje y corriente del convertidor	
	con los elementos de filtrado	340
Figura 10.31	Controlador conectado como UPFC	341
Figura 10.32	Controlador conectado como UPFC en la línea	
	de transmisión	342
Figura 10.33	Sistema de potencia de tres máquinas	344
Figura 10.34	Sistema de potencia de 10 máquinas	346