Aprendizaje de las matemáticas escolares desde un enfoque comunicacional

Palabras clave:
Educación Matemática - Investigación, Matemáticas - Aprendizaje

Autores

Anna Sfard Universidad del Estado de Michigan

Descargas

Los datos de descargas todavía no están disponibles.

Anderson, J.R., Reder, L.M. y Simon, H.A. (1996). Situated learning and education. Educational Researcher, 25 (4), 5-11. https://doi.org/10.3102/0013189X025004005

Bakhtin, M.M. (1981). The dialogic imagination: Four essays (editado por M. Holquist; traducido por C. Emerson). Austin: University of Texas Press.

Bakhtin, M.M. (1986). Speech genres and other late essays (editado por C. Emerson y M. Holquist; traducido por V.W. McGee). Austin: University of Texas Press.

Ball, D. (1997). From the general to particular: Knowing our own students as learners of mathematics. Mathematics Teacher, 90, 732-737. https://doi.org/10.5951/MT.90.9.0732

Bateson, G. (1973). Steps to an ecology of the mind. Frogmre, St. Albans: Paladin.

Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. En T. Cooney y D. Grouws (Eds.), Effective mathematics teaching (pp. 27-46). Reston, VA: National Council of Teachers of Mathematics y Lawrence Erlbaum Associates, Inc.

Bauersfeld, H. (1993). Teachers pre and inservice education for mathematics teaching (Seminario sobre la representación, No. 78). Montreal, Canada: Universite du Quebec, CIRADE.

Bauersfeld, H. (1995). "Language games" in the mathematics classroom: Their function and their effects. En P. Cobb y H.

Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 271-292). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Ben-Yehuda, M., Lavy, I., Linchevski, L. y Sfard, A. (2005). Doing wrong with words: What bars students' access to arithmetical discourses. Journal for Research in Mathematics Education, 36 (3), 176 - 247.

Berieter, C. (1985). Towards the solution of the learning paradox. Review of Educational Research, 55, 201-226. https://doi.org/10.3102/00346543055002201

Blum-Kulka, S. (1997). Discourse pragmatics. En T.A. van Dijk (Ed.), Discourse as social interaction (pp. 38-63). London: Sage.

Blumer, H. (1969). Symbolic interactionism: Perspectives and methods. Englewood Cliffs: Prentice-Hall.

Bordieau, P. (1999). Structures, habitus, practices. En A. Elliot (Ed.), The Blackwell reader in contemporary social theory (pp. 107-118). Oxford, UK: Blackwell.

Bouveresse, J. (1999). Rules, dispositions, and the habitus. En R. Shusterman (Ed.), Bourdieu: A critical reader (pp. 45-63). Oxford, UK: Blackwell.

Brown, G. y Yule, G. (1983). Discourse analysis. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511805226

Brown, J.S, Collins, A. y Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18 (1), 32-42. https://doi.org/10.3102/0013189X018001032

Brown, S.I. (1997). Thinking like a mathematician: A problematic perspective. For the Learning of Mathematics, 17 (2), 35-38.

Brownell, W.A. (1935). Psychological considerations in the learning and teaching of arithmetic. En W. Reeve (Ed.), The teaching of arithmetic. Tenth yearbook of the National Council of Teachers of Mathematics (pp. 1-31). New York: Teachers College, Columbia University.

Bruner, J. (1983). The acquisition of pragmatic commitments. En R. Golinkoff (Ed.), The transition from prelinguistic to linguistic communication (pp. 27-42). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Bruner, J. (1986). Actual minds, possible worlds. Cambridge, MA: Harvard University Press. https://doi.org/10.4159/9780674029019

Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.

Calvino, I. (1983). Mr. Palomar. San Diego: A Harvest/HBJ Book.

Cazden, C. (1988). Classroom discourse. Portsmouth, NH: Heinemann.

Chevallard, Y. (1985). Transposition didactique du savoir savant au savoir enseigne. Grenoble, France: La Pensee Sauvage Editions.

Chevallard, Y. (1990). On mathematics education and culture: Critical afterthoughts. Educational Studies in Mathematics, 21, 3-28. https://doi.org/10.1007/BF00311013

Clements, D.H. y Battista, M.T. (1992). Geometry and spatial reasoning. En D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). New York: Macmillan.

Cobb, P. (1995). Continuing the conversation: A response to Smith. Educational Research-er, 24 (7), 25-27. https://doi.org/10.3102/0013189X024007025

Cobb, P. (1996). Accounting for mathematics learning in the social context of the classroom. En C. Alsina, J.M. Álvarez, B. Hodgson, C. Laborde y A. Pérez (Eds.), 8th International Congress on Mathematics Education: Selected lectures (pp. 85-100). Sevilla, Spain: S.A.E.M. Thales.

Cobb, P. (1998). Learning from distributed theories of intelligence. Mind, Culture, and Activity, 5 (3), 187-204. https://doi.org/10.1207/s15327884mca0503_4

Cobb, P. (1999). Individual and collective mathematical development: The case of statis-tical data analysis. Mathematical Thinking and Learning, 1, 5-43. https://doi.org/10.1207/s15327833mtl0101_1

Cobb, P., Boufi, A., McClain, K. y Whitenack, J. (1997). Reflective discourse and collective reflection. Journal for Research in Mathematics Education, 28 (3), 258-277. https://doi.org/10.2307/749781

Cobb, P. y Bowers, J. (1999). Cognitive and situated perspectives in theory and practice. Educational Researcher, 28 (2), 4-15. https://doi.org/10.3102/0013189X028002004

Cobb, P., Gravemeijer, K., Yackel, E., McClain, K. y Whitenack, J. (1997). Mathematizing and symbolizing: The emergence of chains of signification in one firstgrade classroom. En D. Kirshner y J.A. Whitson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives (pp. 151-234). Mahwah, NJ: Lawrence Erlbaum Associates, Inc. https://doi.org/10.4324/9781003064121-8

Cobb, P., y McClain, K. (1999). Supporting teachers' learning in social and institutional context. Ponencia presentada en International Conference on Mathematics Teacher Education, Taipei, Taiwan.

Cobb, P., Wood, T. y Yackel, E. (1991). A constructivist approach to second grade mathematics. En E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 157-176). Dordrecht, The Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47201-5_8

Cobb, P., Wood, T. y Yackel, E. (1993). Discourse, mathematical thinking, and classroom practice. En E. Forman, N. Minick y A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children's development (pp. 91-119). New York: Oxford University Press.

Cobb, P., Yackel, E. y Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23 (1), 2-33. https://doi.org/10.2307/749161

Cole, M. (1988). Cross-cultural research in the socio-historical tradition. Human Development, 31, 137-151. https://doi.org/10.1159/000275803

Cole, M. (1995). Socio-cultural-historical psychology: some general remarks and a proposal for a new kind of cultural-genetic methodology. En J.V. Wertsch, P. del Rio y A. Álvarez (Eds.), Sociocultural studies of mind (pp. 187-214). Cambridge, MA: Cambridge University Press. https://doi.org/10.1017/CBO9781139174299.010

Cole, M. (1996). Cultural Psychology. Cambridge, Massachusetts: The Belknap Press of Harvard University Press.

Confrey, J. (1994). A theory of intellectual development (Part 1). For the Learning of Mathematics, 14 (3), 2-8.

Davis, P. (1993). Visual theorems. Educational Studies in Mathematics, 24, 333-344. https://doi.org/10.1007/BF01273369

Davis, P. y Hersh, R. (1981). The mathematical experience. London: Penguin.

Davis, R. (1988). The interplay of algebra, geometry, and logic. Journal of Mathematical Behavior, 7, 9-28.

Devlin, K. (1994). A collegiate mathematical experience for nonscience majors. En M. Quigley (Ed.), Proceedings of the Canadian Mathematics Education Study Group(pp. 21-35). Regina, Canada: University of Regina.

Devlin, K. (1997). Editorial: Reduce skills teaching in math class. Focus, 17 (6), 2-3.

Douady, R. (1985). The interplay between different settings. Tool-object dialectic in the extension of mathematical ability-Examples from elementary school teaching. En L. Streefland (Ed.), Proceedings of the 9th International Conference for the Psychology of Mathematics Education (vol. 2, pp. 33-52). Utrecht, The Netherlands: State University of Utrecht, OW & OC.

Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. En F. Furinghetti (Ed.), Proceedings of the 15th International Conference for the Psychology of Mathematics Education (vol. I, pp. 33-48). Assisi, Italy: PME Program Committee.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. En D. Tall (Ed.), Advanced mathematical thinking (pp. 95-123). Dordrecht, The Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47203-1_7

Edwards, D. (1993). But what do children really think? Discourse analysis and conceptual content in children's talk. Cognition and Instruction, 11 (3 y 4), 207-225. https://doi.org/10.1080/07370008.1993.9649021

Edwards, D. (1997). Discourse and cognition. London: Sage. https://doi.org/10.4135/9781446221785

Edwards, D. y Potter, J. (1992). Discursive psychology. Newbury Park, CA: Sage.

Encyclopædia Britannica. (1998). Britannica CD 98, Multimedia Edition. International version.

Engstrom, Y. y Middleton, D. (1996). Cognition and communication at work. Cambridge, Massachusetts: Cambridge University Press. https://doi.org/10.1017/CBO9781139174077

Ernest, P. (1993). Conversation as a metaphor for mathematics and learning. Proceedings of the Day Conference (pp. 58-63). Manchester, UK: Manchester Metropolitan University.

Ernest, P. (1994). The dialogical nature of mathematics. En P. Ernest (Ed.), Mathematics, education and philosophy: An international perspective (pp. 33-48). London: The Falmer Press.

Even, R. (1999). What can teachers learn from research? Documento no publicado.

Fauvel, J. y van Maanen, J. (1997). The role of history of mathematics in the teaching and learning of mathematics. Discussion document for an ICMI study. Educational Studies in Mathematics, 34, 255-259. https://doi.org/10.1023/A:1003038421040

Fischbein, E. (1989). Tacit models and mathematical reasoning. For the Learning of Mathematics, 9 (2), 9-14.

Fischbein, E., Deri, M., Nello, M.S. y Marino, M.S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16, 3-17. https://doi.org/10.2307/748969

Fogelin, R.J. (1995). Wittgenstein (segunda edición.). London: Routledge.

Forman, E.A. (1996). Forms of participation in classroom practice: Implications for learning mathematics. En P. Nesher, L. Steffe, P. Cobb, G. Goldin y B. Greer (Eds.), Theories of mathematical learning (pp. 115-130). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Forman, E.A. y Larreamendy-Joerns, J. (1998). Making the implicit explicit: classroom explanations and conversational implicatures. Mind, Culture, and Activity, 5 (2), 105-113. https://doi.org/10.1207/s15327884mca0502_4

Forman, E.A., Minick, N. y Stone, C.A. (Eds.). (1993). Contexts for learning: Sociocultural dynamics in children's development. Oxford, UK: Oxford University Press.

Foucault, M. (1972). The archæology of knowledge. New York: Harper Colophon.

Freudenthal, H. (1978). Weeding and sowing. Dordrecht, Holland: D. Reidel.

Gadamer, H.-G. (1975). Truth and method. New York: The Seabury Press.

Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice-Hall.

Gee, J.P. (1997). Thinking, learning, and reading: The situated sociocultural mind. En D. Kirshner y J.A. Whitson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives (pp. 235-260). Mahwah, NJ: Lawrence Erlbaum Associates, Inc. https://doi.org/10.4324/9781003064121-9

Goffman, E. (1967). Interaction ritual: Essays on face-to-face behavior. New York: Pantheon Books.

Goffman, E. (1974). Frame analysis, an essay on organization of experience. Boston, MA: Northeastern University Press.

Goffman, E. (1981). Forms of talk. Oxford, UK: Blackwell.

Goffman, E. (1986). Frame analysis: An essay on organization of experience. Boston, MA: Northeastern University Press.

Goodwin, C. (1994). Professional vision. American Anthropologist, 96, 606-633. https://doi.org/10.1525/aa.1994.96.3.02a00100

Goodwin, C. y Goodwin, M.H. (1996). Seeing as situated activity: Formulating planes. En Y. Engestrom y D. Middleton (Eds.), Cognition and communication at work (pp. 61-95). New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139174077.004

Gravemeijer, K. (1994). Developing realistic mathematics education. Utrecht, The Netherlands: CD-beta Press.

Gravemeijer, K., Cobb, P., Bowers, J. y Whitenack, J. (2000) Symbolizing, modeling, and instructional design. En P. Cobb, K.E. Yackel y K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 225-273). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Gray, E.M. y Tall, D.O. (1994). Duality, ambiguity, and flexibility: A "proceptual" view of simple arithmetic. Journal for Research in Mathematics Education, 25 (2), 116-140. https://doi.org/10.5951/jresematheduc.25.2.0116

Greeno, J.G. (1983). Conceptual entities. En D. Gentner y A.L. Stevens (Eds.). Mental models(pp. 227-252). Hillsdale, NJ: Erlbaum.Greeno, J.G. (1997). On claims that answer the wrong question. Educational Researcher, 26 (1), 5-17. https://doi.org/10.3102/0013189X026001005

Grice, H.P. (1975). Logic and conversation. En P. Cole y J.L. Morgan (Eds.), Syntax and semantics (vol. 3: Speech acts, pp. 41-58). New York: Academic Press. https://doi.org/10.1163/9789004368811_003

Griffin, P. y Mehan, H. (1981). Sense and ritual in classroom discourse. En F. Coulmas (Ed.), Conversational routine: Explorations in standardized communication situations and prepatterned speech. The Hague, Netherlands: Mounton.

Halliday, M.A.K. y Hasan, R. (1976). Cohesion in English. London: Longman.

Hanks, P. (Ed.). (1986). Collins Dictionary of the English Language. London: Collins.

Hanna, G. y Jahnke, H.N. (1996). Proof and proving. En A.J. Bishop, K. Clements, C. Keitel, J. Kilpatrick y C. Laborde (Eds.), International handbook of mathematics education(pp. 877-908). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Hardy, G.H. (1940/1967). A mathematician's apology. Cambridge, UK: Cambridge University Press.

Harel, G. y Kaput, J. (1991). The role of conceptual entities and their symbols in building advanced mathematical concepts. En D. Tall (Ed.), Advanced mathematical thinking (pp. 82-94). Dordrecht, The Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47203-1_6

Harre, R. y Gillett, G. (1995). The discursive mind. Thousand Oaks: SAGE Publications. https://doi.org/10.4135/9781452243788

Hefendehl-Hebeker, L. (1991). Negative numbers: Obstacles in their evolution from intuitive to intellectual constructs. For the Learning of Mathematics, 11 (1), 26-32.

Hicks, D. (Ed.). (1996). Discourse, learning, and schooling. Cambridge University Press. https://doi.org/10.1017/CBO9780511720390

Hiebert, J. y Carpenter, T.P. (1992). Learning and teaching with understanding. En D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-100). New York: Macmillan.

Holquist, M. (1990). Dialogism. Bakhtin and his world. London: Routledge.

Johnson, M. (1987). The body in the mind: the bodily basis of meaning, imagination, and reason. Chicago: The University of Chicago Press. https://doi.org/10.7208/chicago/9780226177847.001.0001

Kieran, C. (1992). The learning and teaching of school algebra. En D.A. Grouws (Ed.) Handbook of research on mathematics teaching and learning (pp. 390-419). New York: MacMillan.

Kieran, C. (1994). A functional approach to the introduction of algebra: Some pros and cons. En J.P. da Ponte y J.F. Matos (Eds.), Proceedings of the 18th International Conference for the Psychology of Mathematics Education (vol. 1, pp. 157-175). Lisbon, Portugal: PME Program Committee.

Kieran, C., Hillel, J. y Erlwanger, S. (1986). Perceptual and analytical schema in solving structured turtle-geometry tasks. En C. Hoyles, R. Noss y R. Sutherland (Eds.), Proceedings of Second Logo and Mathematics Education Conference (pp. 154-161). London, UK: University of London, Institute of Education.

Kieran, C. y Sfard, A. (1999). Seeing through symbols: The case of equivalent expressions. Focus on Learning Mathematics, 21 (1), 1-17.

Kilpatrick, J. (1992). A history of research in mathematics education. En D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 3-38). New York: Macmillan.

Kline, M. (1980). Mathematics: The loss of certainty. Oxford, England: Oxford University Press.

Krummheuer, G. (1995). The ethnography of argumentation. En P. Cobb y H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Lakoff, G. (1987). Women, fire and dangerous things: what categories reveal about the mind. Chicago: The University of Chicago Press.

https://doi.org/10.7208/chicago/9780226471013.001.0001

Lakoff, G. (1993). The contemporary theory of metaphor. En A. Ortony (Ed.), Metaphor and thought (segunda edición, pp. 202-250). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139173865.013

Lakoff, G. y Johnson, M. (1980). The metaphors we live by. Chicago: The University of Chicago Press.

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27, 29-63. https://doi.org/10.3102/00028312027001029

Lampert, M. y Blunk, M.L. (Eds.). (1998). Talking mathematics in school: Studies of teaching and learning. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511571251

Lampert, M. y Cobb, P. (2003). Communication and learning in the mathematics classroom. En J. Kilpatrick y D. Schifter (Eds.), A research companion to the NCTM Stan-dards (pp. 237-249). Reston, VA: National Council of Teachers of Mathematics.

Lacan, J. (1996). Ecrits 1. Paris: Seuill.

Lave, J. (1988). Cognition in practice. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511609268

Lave, J. y Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cam-bridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511815355

Lavy, I. (2000). Understanding of concepts in the elementary number theory: Collaborative investigations in interactive computerized learning environment. Disertación doctoral no publicada. Technion, Israel.

Lemke, J.L. (1993). Talking science: Language, learning, and science. Norwood, New Jersey: Ablex Publishing Company.

Leontiev, A.N. (1930). Studies in the cultural development of the child. II. The development of voluntary attention in the child. Journal of Genetic Psychology, 37, 52-81.

Lerman, S. (1996). Intersubjectivity in mathematics learning: A challenge to the radical constructivist paradigm? Journal for Research in Mathematics Education, 27 (2), 133-150. https://doi.org/10.5951/jresematheduc.27.2.0133

Levinson, S. (1983). Pragmatics. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511813313

Love, E. y Pimm, D. (1996). "This is so": A text on text. En A.J. Bishop, K. Clements, C. Keitel, J. Kilpatrick y C. Laborde (Eds.), International handbook of mathematics education (pp. 371-409). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Luria, A.R. (1928). The problem of the cultural development of the child. Journal for Genetic Psychology, 35, 493-506. https://doi.org/10.1080/08856559.1928.10532168

Macnab, D. (2000). Raising standards in mathematics education: values, vision, and TIMSS. Educational Studies in Mathematics, 42 (1), 61-80. https://doi.org/10.1023/A:1004190310335

Mantovani, G. (2000). Exploring borders: Understanding culture and psychology. London: Routledge.

Markovitz, Z., Eylon, B. y Bruckheimer, M. (1986). Functions today and yesterday. For the Learning of Mathematics, 6 (2), 18-24.

Maturana, H.R. y Varela, F.J. (1987). The tree of knowledge: The biological roots of human understanding. Boston: Shambhala.

Mayer, R.E. (1983). Thinking, problem solving, cognition. New York: W.H. Freeman and Company.

Mead, H. (1934). Mind, self, and society (editado por C.W. Morris). Chicago: Chicago University Press.

Morgan, C. (1996). "The language of mathematics": Towards a critical analysis of mathematical text. For the Learning of Mathematics, 16 (3), 2-10.

Moschkovich, J., Schoenfeld, A. y Arcavi, A. (1992). What does it mean to understand a domain? A case study that examines equations and graphs of linear functions. Ponencia presentada en Annual Meeting of the American Educational Research Association, San Francisco.

NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

NCTM (1991). Professional standards for teaching mathematics. Reston, VA: National Council of Teachers of Mathematics.

NCTM (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

O'Connor, M.C. (1996). Managing the intermental: classroom group discussion and the social context of learning. En D. Slobin, J. Gerhardt, A. Kyratzis y J. Guo (Eds.), Social interaction, social context, and language (pp. 495-509). Hillsdale, NJ: Lawrence Erlbaum.

O'Connor, M.C. (1998). Language socialization in the mathematics classroom: Discourse practices and mathematical thinking. En M. Lampert y M. Blunk (Eds.), Talking mathematics: Studies of teaching and learning in school (pp. 17-55). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511571251.004

O'Connor, M.C. y Michaels, S. (1996). Shifting participant frameworks: Orchestrating thinking practices in group discussions. En D. Hicks (Ed.), Discourse, learning, and schooling (pp. 63-103). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511720390.003

Ortony, A. (Ed.). (1993). Metaphor and thought (segunda edición). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781139173865

Pimm, D. (1987). Speaking mathematically. New York: Routledge & Kegan Paul.

Pimm, D. (1995). Symbols and meanings in school mathematics. London: Routledge.

Polya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton, NJ: Princeton University Press.

Quine, W. van O. (1960). Word and object. Cambridge, MA: MIT Press.

Reddy, M. (1979/1993). The conduit metaphor: A case of frame conflict in our language about language. En A. Ortony (Ed.), Metaphor and thought (segunda edición, pp. 164-201). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781139173865.012

Ricoeur, P. (1977). The rule of metaphor. Toronto: Toronto University Press.

Rittenhouse, P.S. (1998). The teacher's role in mathematical conversation: Stepping in and stepping out. En M. Lampert y M.L. Blunk (Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 163-189). Cambridge, England: Cambridge University Press.

https://doi.org/10.1017/CBO9780511571251.010

Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. Oxford: Oxford University Press.

Rorty, R. (1991). Objectivity, relativism, and truth. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781139173643

Rotman, B. (1988). Toward a semiotics of mathematics. Semiotica, 72, 1-35. https://doi.org/10.1515/semi.1988.72.1-2.1

Rotman, B. (1994). Mathematical writing, thinking, and virtual reality. En P. Ernest (Ed.), Mathematics, education, and philosophy: An international perspective (pp. 76-86). London: Falmer Press.

Sacks, S. (Ed.), (1978). On metaphor. Chicago: The University of Chicago Press.

Salomon, G. (Ed.), (1993). Distributed cognitions: psychological and educational considerations. Cambridge, UK: Cambridge University Press.

Scheffler, I. (1991). "Educational metaphors". En In praise of the cognitive emotions and other essays (pp. 45-55). New York: Routledge.

Schmidt, W.H., McKnight, C.C., Cogan, L.S., Jakwerth, P.M. y Houang, R.T. (1999). Facing the consequences - Using TIMSS for a closer look at U.S. mathematics. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Schutz, A. (1967). The problem of social reality. En M. Natanson y H.L. van Breda (Eds.), Collected papers (vol. 1). The Hague, The Netherlands: Martinus Nijhoff.

Schutz, A. y Luckmann, T. (1973). The structures of the life world. Evanston: Northwestern University Press.

Schwartz, J. y Yerushalmy, M. (1992). Getting students to function in and with algebra. En G. Harel y E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (Mathematical Association of America Notes, vol. 25, pp. 261-289). Washington, DC: Mathematical Association of America.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36. https://doi.org/10.1007/BF00302715

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-The case of function. En E. Dubinsky y G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (Mathematical Association of America Notes, No. 25, pp. 59-84). Washington, DC: Mathematical Association of America.

Sfard, A. (1994a). Reification as the birth of metaphor. For the Learning of Mathematics, 14 (1), 44-55.

Sfard, A. (1994b). Mathematical practices, anomalies, and classroom communication problems. En P. Ernest (Ed.), Constructing mathematical knowledge (pp. 248-273). London: Falmer.

Sfard, A. (1997). Commentary: On metaphorical roots of conceptual growth. En L. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 339-372). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Sfard, A. (1998a). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27 (2), 4-13. https://doi.org/10.3102/0013189X027002004

Sfard, A. (1998b).The many faces of mathematics: Do mathematicians and researchers in mathematics education speak about the same thing? En A. Sierpinska y J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity. Book II, ICMI Study (pp. 491-512). Dordrecht, The Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-5470-3_33

Sfard, A. (2000a). Symbolizing mathematical reality into being: How mathematical discourse and mathematical objects create each other. En P. Cobb, K.E. Yackel y K. McClain (Eds), Symbolizing and communicating: perspectives on mathematical discourse, tools, and instructional design (pp. 37-98). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Sfard, A. (2000b). Steering (dis)course between metaphor and rigor: Using focal analysis to investigate the emergence of mathematical objects. Journal for Research in Mathematics Education, 31 (3), 296-327. https://doi.org/10.2307/749809

Sfard, A. (2000c). On reform movement and the limits of mathematical discourse. Mathematical Thinking and Learning, 2 (3), 157-189.

https://doi.org/10.1207/S15327833MTL0203_1

Sfard, A. (2003). Balancing the unbalanceable: The NCTM Standards in the light of theories of learning mathematics. En J. Kilpatrick, W.G. Martin y D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 353-392). Reston, VA: National Council of Teachers of Mathematics. (Traducido al español por Patricia Inés Perry y Hernando Alfonso como: Equilibrar algo desequilibrado: los Estándares del NCTM a la luz de las teorías del aprendizaje de las matemáticas. Revista EMA, 6 (2), 95-140; 6 (3), 207-249).

Sfard, A. y Kieran, C. (2001a). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students' mathematical interactions. Mind, Culture, and Activity 8 (1), 42-76. https://doi.org/10.1207/S15327884MCA0801_04

Sfard, A. y Kieran, C. (2001b). Preparing teachers for handling students' mathematical communication: Gathering knowledge and building tools. En F.L. Lin y T. Cooney (Eds.), Making sense of mathematics teacher education. Dordrecht, The Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-010-0828-0_9

Sfard, A. y Lavi, I. (2005). Why cannot children see as the same what grownups cannot see as different? - Early numerical thinking revisited. Cognition and Instruction, 23(2), 237-309. https://doi.org/10.1207/s1532690xci2302_3

Sfard, A. y Linchevski, L. (1994). The gains and the pitfalls of reification - the case of algebra. Educational Studies in Mathematics, 26, 191-228. Sfard, A. y Prusak, A. (2005). Telling identities: In search of an analytic tool for investigat-ing learning as a culturally shaped activity. Educational Researcher, 34 (4), 14-22. http://www.aera.net/uploadedFiles/Publications/Journals/Educational_Research-er/3404/3404%20Sfard%20PDF.pdf https://doi.org/10.3102/0013189X034004014

Sierpinska, A. (1995). Mathematics "in context," "pure" or "with applications"? For the Learning of Mathematics, 15 (1), 2-15.

Sierpinska, A. y Lerman, S. (1996). Epistemologies of mathematics and of mathematics education. En A.J. Bishop, K. Clements, C. Keitel, J. Kilpatrick y C. Laborde (Eds.), International handbook of mathematics education (pp. 827-876). Dordrecht, The Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-1465-0_26

Smith, E. (1995). Where is the mind? "Knowing" and "knowledge" in Cobb's constructivist and sociocultural perspectives. Educational Researcher, 24 (7), 23-24. https://doi.org/10.3102/0013189X024007023

Smith, J.P., diSessa, A.A. y Rochelle, J. (1993). Misconceptions reconceived: A construc-tivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115-163. https://doi.org/10.1207/s15327809jls0302_1

Steinbring, H. (1989). Routine and meaning in the mathematics classroom. For the Learning ofMathematics, 9 (1), 24-33.

Steinbring, H. (1998). Epistemological constraints of mathematical knowledge in social learning settings. En A. Sierpinska y J. Kilpatrick (Eds.), Mathematicseducation as a research domain: A search for identity: An ICMI study (Book 2, pp. 513-526). Dordrecht, The Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-5470-3_34

Steinbring, H., Bartolini Bussi, M.G. y Sierpinska, A. (Eds.). (1998). Language and communication in the mathematics classroom. Reston, VA: National Council of Teachers of Mathematics.

Stevens, R. y Hall, R. (1998). Disciplined perception: Learning to see in technoscience. En M. Lampert y M.L. Blunk (Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 107-150). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511571251.007

Stigler, J. y Hiebert, J. (1999). The teaching gap, best ideas from the world's teachers for improving education in the classroom. New York: The Free Press.Tall, D. y Schwartzenberger, R. (1978). Conflicts in the learning of real numbers and limits. The Mathematics Teaching, 82, 44-49.

Tall, D. y Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. https://doi.org/10.1007/BF00305619

Thomas, R. (1996). Proto-mathematics and/or real mathematics. For the Learning of Mathematics, 16 (2), 11-18.

Thompson, P.W. (1985). Experience, problem solving, and learning mathematics: Con-siderations in developing mathematics curricula. En E.A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 189-236). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, Massachusetts: Harvard University Press.

van Hiele, P.M. (1985). The child's thought and geometry. En D. Fuys, D. Geddes y R. Tischler (Eds.), English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele (pp. 243-252). Brooklyn, NY: Brooklyn College, School of Education.

van Oers, B. (2000). The appropriation of mathematical symbols: A psychosemiotic approach to mathematics learning. En P. Cobb, E. Yackel y K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 133-176). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Vinner, S. y Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20 (4), 356-366. https://doi.org/10.2307/749441

Voigt, J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des Mathématiques, 6 (1), 69-118.

Voigt, J. (1994). Negotiation of mathematical meaning and learning mathematics. Edu-cational Studies in Mathematics, 26, 275-298.

https://doi.org/10.1007/BF01273665

Voigt, J. (1995). Thematic patterns of interaction and sociomathematical norms. En P. Cobb y H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 163-201). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Voigt, J. (1996). Negotiation of mathematical meaning in classroom processes: Social interaction and learning mathematics. En L.P. Steffe, P. Nesher, P. Cobb, G.A. Goldin y B. Greer (Eds.), Theories of mathematical learning (pp. 21-50), Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Vygotsky, L.S. (1931/1981). The genesis of higher mental functions. En J. Wertsch (Ed.), The concept of activity in Soviet psychology. New York: Sharpe.

Vygotsky, L.S. (1962). Thought and language (traducido y editado por E. Haufmann y G. Vakar). New York: Wiley. https://doi.org/10.1037/11193-000

Vygotsky, L.S. (1978). Mind in society: The development of higher psychological process-es (editado por M. Cole, V. John-Steiner, y E. Souberman). Cambridge, MA: Harvard University Press.

Vygotsky, L.S. (1987). Thinking and speech. En R.W. Rieber y A.C. Carton (Eds.), The col-lected works of L.S.

Vygotsky (vol. 1, pp. 39-285). New York: Plenum Press.

Walkerdine, V. (1988). The mastery of reason: Cognitive development and the production of rationality. London: Routledge.

Wenger, E (1998). Communities of practice: Learning, meaning, and community. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511803932

Wittgenstein, L. (1953). Philosophical investigations (G.E.M. Anscombe, traducción). Oxford, UK: Blackwell.

Wittgenstein, L. (1956). Remarks on the foundations of mathematics. Oxford, England: Blackwell.

Wittgenstein, L. (1967). Philosophical investigations (G.E.M. Anscombe, traducción). Oxford, UK: Blackwell. (Original publicado en 1953).

Wittgenstein, L. (1969). On certainty. Oxford, UK: Blackwell.Wu, H. (1997). The mathematics education reform: Why you should be concerned and what you can do. American Mathematical Monthly, 103, 954-962.

Yackel, E., y Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27, 458-477. https://doi.org/10.5951/jresematheduc.27.4.0458

Carátula libro Aprendizaje de las matemáticas escolares desde un enfoque comunicacional
Publicado
2008-03-31
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Detalles sobre esta monografía

ISBN-13 (15)
978-958-765-607-7