Una aproximación práctica a las redes neuronales artificiales

Palabras clave:
Inteligencia artificial, Redes neurales (Informática)

Autores

Eduardo Francisco Caicedo Bravo Universidad del Valle
Jesús Alfonso Lopez Sotelo Universidad Autónoma de Occidente
  • Resumen


  • Página Legal


  • Índice General


  • Introducción


  • Capítulo 1. Generalidades sobre redes neuronales artificiales.


  • Capítulo 2. Redes neuronales perceptron y adaline.


  • Capítulo 3. Percetron multicapa y algoritmo backpropagation


  • Capítulo 4. Red neuronal de hopfield


  • Capítulo 5. Mapas auto-organizados de kohonen


  • Capítulo 6. Red neuronal de base radial (RBF)


  • Bibliografía


Descargas

Los datos de descargas todavía no están disponibles.

[Barto 1983]

A.R. Barto, R.S. Sutton and C. W. Anderson, "Neuron like adaptive elements that can solve difficult learning control problems", IEEE transactions on Systems, Man, and Cybernetics. Vol. 13 No. 1983.

[Battiti 1992]

R. Battiti, "First and order methods for learning between steepest descent and Newton's method", Neural computation Vol. 4 No. 2 1992.

https://doi.org/10.1162/neco.1992.4.2.141

[Beal72]

Beale, E.M.L., "A derivation of conjugate gradients", in F.A. Lootsma, Ed., Numerical methods for nonlinear optimization, London: Academic Press, 1972.

[Bishop 1995]

Christopher M. Bishop. "Neural Networks for Pattern Recognition", Oxford University Press, USA; 1st edition, 1995.

[Bishop 2007]

Christopher M. Bishop. "Pattern Recognition and Machine Learning", Springer. 2007.

[Cybenko 1989]

G. Cybenko. "Approximation by superposition of a sigmoidal function", Math. of Control, Signals and Systems, Vol. 2 No.4 1989.

https://doi.org/10.1007/BF02551274

[Duda 2000]

Richard O. Duda, Peter E. Hart, David G. Stork. "Pattern Classification (2nd Edition)", Wiley-Interscience. 2000.

[Elman 1990]

J. Elman, "Finding Structure in time Cognitive", Science Vol. 14. 1990.

https://doi.org/10.1207/s15516709cog1402_1

[Fausett 1993]

Laurene V. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Prentice Hall; US Ed edition, 1993.

[FlRe64]

Fletcher, R., and C.M. Reeves, "Function minimization by conjugate gradients", Computer Journal, Vol. 7, 1964, pp. 149-154.

https://doi.org/10.1093/comjnl/7.2.149

[FoHa97]

Foresee, F.D., and M.T. Hagan, "Gauss-Newton approximation to Bayesian regularization", Proceedings of the 1997 International Joint Conference on Neural Networks, 1997, pp. 1930-1935.

[Foresee 1997]

F. D. Foresee and M. T. Hagan, "Gauss-newton approximation to bayesian regularization", In Proceedings of the 1997 International Joint Conference on Neural Networks, 1997.

[Freeman 1993a]

J. Freeman, D. Skapura, "Redes neuronales, Algoritmos, Aplicaciones y Técnicas de Programación", Editorial Addison-Wesley/Diaz de Santos, 1993.

[Freeman 1993b]

J. Freeman, D. "Simulating Neural Networks with Mathematica", Addison-Wesley, 1993.

[Hagan 1994]

M. T. Hagan and Menhaj M. B., "Training feedforward networks with the Marquardt algorithm". IEEE Trans. on Neural Networks, Vol. 5 No. 6, 1994.

https://doi.org/10.1109/72.329697

[Hagan 1996]

Martin T. Hagan, Howard B. Demuth, and Mark H. Beale, "Neural Network Design", PWS Publishing Company, 1996.

[Hagan 2008]

Martin T. Hagan, Howard B. Demuth, and Mark H. Beale, "MATLAB® Neural Networks Toolbox User's Guide V 6.0". The Mathworks Inc. 2008.

[Hassoun 1995 ]

Mohamad H. Hassoun "Fundamentals of Artificial Neural Networks", The MIT Press. 1995.

[Hastie 2003]

T. Hastie (Author), R. Tibshirani (Author), J. H. Friedman, "The Elements of Statistical Learning", Springer. 2003

[Haykin 1994]

S. Haykin, "Neural networks a Comprehensive Foundation", First Edition, Prentice Hall, 1994.

[Haykin 1999]

S. Haykin, "Neural networks a Comprehensive Foundation", Second Edition, Prentice Hall, 1999.

[Hebb 1949]

D. O. Hebb, "The Organization of Behavior", Wiley. 1949.

[Hilera 1996]

José Hilera y Victor Martínez. "Redes Neuronales Artificiales. Fundamentos, modelos y aplicaciones". Alfa Omega - Rama, 1996.

[Hinton 1989]

G. E. Hinton, "Connectionist learning procedures", Artificial Intelligence Vol. 40 1989.

https://doi.org/10.1016/0004-3702(89)90049-0

[Hopfield 1982]

J.J. Hopfield, "Neural networks and physical system with emergent collective computational abilities", Proceedings of the National Academy of Science, Vol. 79 1982.

https://doi.org/10.1073/pnas.79.8.2554

[Hopfield 1984]

J.J. Hopfield. "Neurons with graded response have collective computational properties like those of two-state neurons", Proceedings of the National Academy of Science, Vol. 81 1984.

https://doi.org/10.1073/pnas.81.10.3088

[Hornik 1989]

K. Hornik, "Multilayer feedforward networks are universal approximators", Neural Networks, No. 2, 1989.

https://doi.org/10.1016/0893-6080(89)90020-8

[Hunt 1991]

K. Hunt and D. Sbarbaro, "Neural Networks for Non-Linear Internal Model Control", IEE proceedings-D, vol. 138, No. 5. UK 1991.

https://doi.org/10.1049/ip-d.1991.0059

[Ienne 2005]

P. Ienne and G. Kuhn, "Digital Systems for Neural Networks", Digital Signal Processing Technology, volume CR57 of Critical Reviews Series, pages 314-45. SPIE Optical Engineering, Orlando, Fl. USA. 1995.

[Kecman 2001]

Vojislav Kecman. "Learning and Soft Computing. The MIT Press", 2001.

[Kohonen 2000]

Teuvo Kohonen, "Self Organizing Maps", Springer - Verlag, 2000.

https://doi.org/10.1007/978-3-642-56927-2

[Kosko 1987]

B. Kosko, "Adaptive bidirectional associative memory", Applied Optics Vol. 26. 1987.

https://doi.org/10.1364/AO.26.004947

[Kosko 1988]

B. Kosko, "Bidirectional associative memories", IEEE transactions on Systems, Man, and Cybernetics. Vol. 18 No.1 1988.

https://doi.org/10.1109/21.87054

[Kosko 1992]

B. Kosko, "Neural Networks and Fuzzy Systems", Prentice Hall 1992.

[LeCun 1998]

Y. LeCun, L. Bottou, G.B. Orr and K.-R. Muller, Efficient backprop, "Neural Networks-Tricks of the Trade", Springer Lecture Notes in Computer Sciences 1524, pp.5-50, 1998.

https://doi.org/10.1007/3-540-49430-8_2

[Lippman 1987]

R.P Lippman,., "An introduction to computing with neural nets," IEEE ASSP Magazine, 1987, pp. 4-22.

https://doi.org/10.1109/MASSP.1987.1165576

[Lippman 1989]

R.P Lippman,., "Pattern Classification using Neural Networks," IEEE Communication Magazine, 1989, pp. 47-64.

https://doi.org/10.1109/35.41401

[Looney 1997]

Carl G. Looney. "Pattern Recognition and Neural Networks, Theory and Algorithms for Engineers and Scientists", Oxford University Press, 1997.

[MacKay 1992a]

D. J. MacKay, "Bayesian interpolation", Neural Computation, Vol. 4, No. 3 1992.

https://doi.org/10.1162/neco.1992.4.3.415

[MacKay 1992b]

D. J. MacKay. "A practical bayesian framework for backpropagation networks", Neural Computation, Vol. 4, No. 3 1992.

https://doi.org/10.1162/neco.1992.4.3.448

[Masters 1993]

Timoty Masters, "Practical Neural Network Recipes in C++", Morgan Kaufmann, 1993.

https://doi.org/10.1016/B978-0-08-051433-8.50017-3

[Masters 1994]

Timoty Masters, "Signal and Image Processing with Neural Networks: A C++ Sourcebook", Wiley, 1994.

[Masters 1995]

Timoty Masters, "Advanced Algorithms for Neural Network: A C++ Sourcebook", John Wiley & Sons Inc 1995.

[Martín del Brío 2007]

Bonifacio Martín del Brío, Alfredo Sanz Molina, "Redes Neuronales y Sistemas Borrosos", Alfa Omega - Rama, 2007.

[McCulloch 1943]

W. McCulloch and W. Pitts "A logical calculus of the ideas immanent in nervous activity", Bulletin of mathematical Biophysics Vol. 5, 1948.

https://doi.org/10.1007/BF02478259

[Michie 1994]

D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds) "Machine Learning, Neural and Statistical Classification", Ellis Horwood. 1994.

[Minsky 1969]

M. Minsky and S. Papert, "Perceptrons", MIT Press. 1969.

[Moll93]

Moller, M.F., "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, Vol. 6, 1993.

https://doi.org/10.1016/S0893-6080(05)80056-5

[Nabney 2004]

Ian T. Nabney, "Netlab" Springer, 2004.

[Narendra 1990]

K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks", IEEE Trans. on Neural Networks, Vol. 1 No. 1 1990.

https://doi.org/10.1109/72.80202

[Neal 1996]

R. M. Neal, "Bayesian Learning for Neural Networks", Springer-Verlag, 1996.

https://doi.org/10.1007/978-1-4612-0745-0

[NgWi90]

Nguyen, D., and B. Widrow, "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights", Proceedings of the International Joint Conference on Neural Networks, Vol. 3, 1990, pp. 21-26.

[Norgaard 2000]

Norgaard, M., "Neural Networks for Modeling and Control of Dynamic Systems", Springer - Verlag, London. 2000.

[Park 1991]

J. Park and I. Sandberg, "Universal approximation using radial basis function networks", Neural Computation, No. 3, 1991.

https://doi.org/10.1162/neco.1991.3.2.246

[Pham 1995]

X. Pham, D. LIU. "Neural Networks for Identification, Prediction and Control", Springer-Verlag, London, UK, 1995.

https://doi.org/10.1007/978-1-4471-3244-8

[Powell77]

Powell, M.J.D., "Restart procedures for the conjugate gradient method", Mathematical Programming, Vol. 12, 1977, pp. 241-254.

https://doi.org/10.1007/BF01593790

[Principe 1999]

José C. Principe, Neil R. Euliano, W. Curt Lefebvre, "Neural and Adaptive Systems: Fundamentals through Simulations", Wiley, 1999

[Ripley 1996]

Brian D. Ripley, "Pattern Recognition and Neural Networks", Cambridge University Press, 1996

https://doi.org/10.1017/CBO9780511812651

[Rosenblatt 1961]

F. Rosenblatt, "Principles of Neurodynamcis", Spartan Press 1961.

[Rosenblatt 1958]

F. Rosenblatt "The Perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review. Vol. 65 1958.

https://doi.org/10.1037/h0042519

[RuHi86a]

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, "Learning internal representations by error propagation", Parallel Data Processing, Vol. 1, Cambridge, MA: The M.I.T. Press, 1986, pp. 318-362.

[Rumelhart 1986]

D. E. Rumelhart G. e Hinton and R. J. Williams, "Learning representations by back-propagating errors", Nature Vol 323 1986.

https://doi.org/10.1038/323533a0

[Rusell 1997]

Russell D. Reed, Robert J. Marks "II Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks", The MIT Press. 1999.

[Shepherd 1997]

A. Shepherd Second-Order, "Methods for Neural Networks", Springer-Verlag 1997.

https://doi.org/10.1007/978-1-4471-0953-2

[Vapnik 1995]

V. Vapnik, "The nature of Statistical Learning Theory", Springer Verkag. 1995.

https://doi.org/10.1007/978-1-4757-2440-0

[Vries 1992]

Vries B. and J. Principe, "The gamma model: A new neural networks model for temporal processing", Neural Network Vol 5., 1992.

https://doi.org/10.1016/S0893-6080(05)80035-8

[Widrow 1990]

Bernard Widrow and Hoff M. "30 years of adaptive neural networks: Perceptron, madaline and backpropagation", Proceedings of the IEEE, Vol. 78. No. 9, 1990.

https://doi.org/10.1109/5.58323

[Werbos 1990]

Paul Werbos, "Backpropagation through time: What it does and how do it", Proceeding IEEE, vol. 78, No. 10, Oct. 1990, pp 1550-1560.

https://doi.org/10.1109/5.58337

Carátula libro Una aproximación práctica a las redes neuronales artificiales
Publicado
2017-10-01
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Detalles sobre esta monografía

ISBN-13 (15)
978-958-765-510-0
doi
10.25100/peu.64