Una aproximación práctica a las redes neuronales artificiales
-
Resumen
-
Página Legal
-
Índice General
-
Introducción
-
Capítulo 1. Generalidades sobre redes neuronales artificiales.
-
Capítulo 2. Redes neuronales perceptron y adaline.
-
Capítulo 3. Percetron multicapa y algoritmo backpropagation
-
Capítulo 4. Red neuronal de hopfield
-
Capítulo 5. Mapas auto-organizados de kohonen
-
Capítulo 6. Red neuronal de base radial (RBF)
-
Bibliografía
Descargas
[Barto 1983]
A.R. Barto, R.S. Sutton and C. W. Anderson, "Neuron like adaptive elements that can solve difficult learning control problems", IEEE transactions on Systems, Man, and Cybernetics. Vol. 13 No. 1983.
[Battiti 1992]
R. Battiti, "First and order methods for learning between steepest descent and Newton's method", Neural computation Vol. 4 No. 2 1992.
https://doi.org/10.1162/neco.1992.4.2.141
[Beal72]
Beale, E.M.L., "A derivation of conjugate gradients", in F.A. Lootsma, Ed., Numerical methods for nonlinear optimization, London: Academic Press, 1972.
[Bishop 1995]
Christopher M. Bishop. "Neural Networks for Pattern Recognition", Oxford University Press, USA; 1st edition, 1995.
[Bishop 2007]
Christopher M. Bishop. "Pattern Recognition and Machine Learning", Springer. 2007.
[Cybenko 1989]
G. Cybenko. "Approximation by superposition of a sigmoidal function", Math. of Control, Signals and Systems, Vol. 2 No.4 1989.
https://doi.org/10.1007/BF02551274
[Duda 2000]
Richard O. Duda, Peter E. Hart, David G. Stork. "Pattern Classification (2nd Edition)", Wiley-Interscience. 2000.
[Elman 1990]
J. Elman, "Finding Structure in time Cognitive", Science Vol. 14. 1990.
https://doi.org/10.1207/s15516709cog1402_1
[Fausett 1993]
Laurene V. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Prentice Hall; US Ed edition, 1993.
[FlRe64]
Fletcher, R., and C.M. Reeves, "Function minimization by conjugate gradients", Computer Journal, Vol. 7, 1964, pp. 149-154.
https://doi.org/10.1093/comjnl/7.2.149
[FoHa97]
Foresee, F.D., and M.T. Hagan, "Gauss-Newton approximation to Bayesian regularization", Proceedings of the 1997 International Joint Conference on Neural Networks, 1997, pp. 1930-1935.
[Foresee 1997]
F. D. Foresee and M. T. Hagan, "Gauss-newton approximation to bayesian regularization", In Proceedings of the 1997 International Joint Conference on Neural Networks, 1997.
[Freeman 1993a]
J. Freeman, D. Skapura, "Redes neuronales, Algoritmos, Aplicaciones y Técnicas de Programación", Editorial Addison-Wesley/Diaz de Santos, 1993.
[Freeman 1993b]
J. Freeman, D. "Simulating Neural Networks with Mathematica", Addison-Wesley, 1993.
[Hagan 1994]
M. T. Hagan and Menhaj M. B., "Training feedforward networks with the Marquardt algorithm". IEEE Trans. on Neural Networks, Vol. 5 No. 6, 1994.
https://doi.org/10.1109/72.329697
[Hagan 1996]
Martin T. Hagan, Howard B. Demuth, and Mark H. Beale, "Neural Network Design", PWS Publishing Company, 1996.
[Hagan 2008]
Martin T. Hagan, Howard B. Demuth, and Mark H. Beale, "MATLAB® Neural Networks Toolbox User's Guide V 6.0". The Mathworks Inc. 2008.
[Hassoun 1995 ]
Mohamad H. Hassoun "Fundamentals of Artificial Neural Networks", The MIT Press. 1995.
[Hastie 2003]
T. Hastie (Author), R. Tibshirani (Author), J. H. Friedman, "The Elements of Statistical Learning", Springer. 2003
[Haykin 1994]
S. Haykin, "Neural networks a Comprehensive Foundation", First Edition, Prentice Hall, 1994.
[Haykin 1999]
S. Haykin, "Neural networks a Comprehensive Foundation", Second Edition, Prentice Hall, 1999.
[Hebb 1949]
D. O. Hebb, "The Organization of Behavior", Wiley. 1949.
[Hilera 1996]
José Hilera y Victor Martínez. "Redes Neuronales Artificiales. Fundamentos, modelos y aplicaciones". Alfa Omega - Rama, 1996.
[Hinton 1989]
G. E. Hinton, "Connectionist learning procedures", Artificial Intelligence Vol. 40 1989.
https://doi.org/10.1016/0004-3702(89)90049-0
[Hopfield 1982]
J.J. Hopfield, "Neural networks and physical system with emergent collective computational abilities", Proceedings of the National Academy of Science, Vol. 79 1982.
https://doi.org/10.1073/pnas.79.8.2554
[Hopfield 1984]
J.J. Hopfield. "Neurons with graded response have collective computational properties like those of two-state neurons", Proceedings of the National Academy of Science, Vol. 81 1984.
https://doi.org/10.1073/pnas.81.10.3088
[Hornik 1989]
K. Hornik, "Multilayer feedforward networks are universal approximators", Neural Networks, No. 2, 1989.
https://doi.org/10.1016/0893-6080(89)90020-8
[Hunt 1991]
K. Hunt and D. Sbarbaro, "Neural Networks for Non-Linear Internal Model Control", IEE proceedings-D, vol. 138, No. 5. UK 1991.
https://doi.org/10.1049/ip-d.1991.0059
[Ienne 2005]
P. Ienne and G. Kuhn, "Digital Systems for Neural Networks", Digital Signal Processing Technology, volume CR57 of Critical Reviews Series, pages 314-45. SPIE Optical Engineering, Orlando, Fl. USA. 1995.
[Kecman 2001]
Vojislav Kecman. "Learning and Soft Computing. The MIT Press", 2001.
[Kohonen 2000]
Teuvo Kohonen, "Self Organizing Maps", Springer - Verlag, 2000.
https://doi.org/10.1007/978-3-642-56927-2
[Kosko 1987]
B. Kosko, "Adaptive bidirectional associative memory", Applied Optics Vol. 26. 1987.
https://doi.org/10.1364/AO.26.004947
[Kosko 1988]
B. Kosko, "Bidirectional associative memories", IEEE transactions on Systems, Man, and Cybernetics. Vol. 18 No.1 1988.
https://doi.org/10.1109/21.87054
[Kosko 1992]
B. Kosko, "Neural Networks and Fuzzy Systems", Prentice Hall 1992.
[LeCun 1998]
Y. LeCun, L. Bottou, G.B. Orr and K.-R. Muller, Efficient backprop, "Neural Networks-Tricks of the Trade", Springer Lecture Notes in Computer Sciences 1524, pp.5-50, 1998.
https://doi.org/10.1007/3-540-49430-8_2
[Lippman 1987]
R.P Lippman,., "An introduction to computing with neural nets," IEEE ASSP Magazine, 1987, pp. 4-22.
https://doi.org/10.1109/MASSP.1987.1165576
[Lippman 1989]
R.P Lippman,., "Pattern Classification using Neural Networks," IEEE Communication Magazine, 1989, pp. 47-64.
https://doi.org/10.1109/35.41401
[Looney 1997]
Carl G. Looney. "Pattern Recognition and Neural Networks, Theory and Algorithms for Engineers and Scientists", Oxford University Press, 1997.
[MacKay 1992a]
D. J. MacKay, "Bayesian interpolation", Neural Computation, Vol. 4, No. 3 1992.
https://doi.org/10.1162/neco.1992.4.3.415
[MacKay 1992b]
D. J. MacKay. "A practical bayesian framework for backpropagation networks", Neural Computation, Vol. 4, No. 3 1992.
https://doi.org/10.1162/neco.1992.4.3.448
[Masters 1993]
Timoty Masters, "Practical Neural Network Recipes in C++", Morgan Kaufmann, 1993.
https://doi.org/10.1016/B978-0-08-051433-8.50017-3
[Masters 1994]
Timoty Masters, "Signal and Image Processing with Neural Networks: A C++ Sourcebook", Wiley, 1994.
[Masters 1995]
Timoty Masters, "Advanced Algorithms for Neural Network: A C++ Sourcebook", John Wiley & Sons Inc 1995.
[Martín del Brío 2007]
Bonifacio Martín del Brío, Alfredo Sanz Molina, "Redes Neuronales y Sistemas Borrosos", Alfa Omega - Rama, 2007.
[McCulloch 1943]
W. McCulloch and W. Pitts "A logical calculus of the ideas immanent in nervous activity", Bulletin of mathematical Biophysics Vol. 5, 1948.
https://doi.org/10.1007/BF02478259
[Michie 1994]
D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds) "Machine Learning, Neural and Statistical Classification", Ellis Horwood. 1994.
[Minsky 1969]
M. Minsky and S. Papert, "Perceptrons", MIT Press. 1969.
[Moll93]
Moller, M.F., "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, Vol. 6, 1993.
https://doi.org/10.1016/S0893-6080(05)80056-5
[Nabney 2004]
Ian T. Nabney, "Netlab" Springer, 2004.
[Narendra 1990]
K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks", IEEE Trans. on Neural Networks, Vol. 1 No. 1 1990.
https://doi.org/10.1109/72.80202
[Neal 1996]
R. M. Neal, "Bayesian Learning for Neural Networks", Springer-Verlag, 1996.
https://doi.org/10.1007/978-1-4612-0745-0
[NgWi90]
Nguyen, D., and B. Widrow, "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights", Proceedings of the International Joint Conference on Neural Networks, Vol. 3, 1990, pp. 21-26.
[Norgaard 2000]
Norgaard, M., "Neural Networks for Modeling and Control of Dynamic Systems", Springer - Verlag, London. 2000.
[Park 1991]
J. Park and I. Sandberg, "Universal approximation using radial basis function networks", Neural Computation, No. 3, 1991.
https://doi.org/10.1162/neco.1991.3.2.246
[Pham 1995]
X. Pham, D. LIU. "Neural Networks for Identification, Prediction and Control", Springer-Verlag, London, UK, 1995.
https://doi.org/10.1007/978-1-4471-3244-8
[Powell77]
Powell, M.J.D., "Restart procedures for the conjugate gradient method", Mathematical Programming, Vol. 12, 1977, pp. 241-254.
https://doi.org/10.1007/BF01593790
[Principe 1999]
José C. Principe, Neil R. Euliano, W. Curt Lefebvre, "Neural and Adaptive Systems: Fundamentals through Simulations", Wiley, 1999
[Ripley 1996]
Brian D. Ripley, "Pattern Recognition and Neural Networks", Cambridge University Press, 1996
https://doi.org/10.1017/CBO9780511812651
[Rosenblatt 1961]
F. Rosenblatt, "Principles of Neurodynamcis", Spartan Press 1961.
[Rosenblatt 1958]
F. Rosenblatt "The Perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review. Vol. 65 1958.
https://doi.org/10.1037/h0042519
[RuHi86a]
Rumelhart, D.E., G.E. Hinton, and R.J. Williams, "Learning internal representations by error propagation", Parallel Data Processing, Vol. 1, Cambridge, MA: The M.I.T. Press, 1986, pp. 318-362.
[Rumelhart 1986]
D. E. Rumelhart G. e Hinton and R. J. Williams, "Learning representations by back-propagating errors", Nature Vol 323 1986.
https://doi.org/10.1038/323533a0
[Rusell 1997]
Russell D. Reed, Robert J. Marks "II Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks", The MIT Press. 1999.
[Shepherd 1997]
A. Shepherd Second-Order, "Methods for Neural Networks", Springer-Verlag 1997.
https://doi.org/10.1007/978-1-4471-0953-2
[Vapnik 1995]
V. Vapnik, "The nature of Statistical Learning Theory", Springer Verkag. 1995.
https://doi.org/10.1007/978-1-4757-2440-0
[Vries 1992]
Vries B. and J. Principe, "The gamma model: A new neural networks model for temporal processing", Neural Network Vol 5., 1992.
https://doi.org/10.1016/S0893-6080(05)80035-8
[Widrow 1990]
Bernard Widrow and Hoff M. "30 years of adaptive neural networks: Perceptron, madaline and backpropagation", Proceedings of the IEEE, Vol. 78. No. 9, 1990.
https://doi.org/10.1109/5.58323
[Werbos 1990]
Paul Werbos, "Backpropagation through time: What it does and how do it", Proceeding IEEE, vol. 78, No. 10, Oct. 1990, pp 1550-1560.
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.