Una aproximación práctica a las redes neuronales artificiales
- Inteligencia artificial
- Redes neurales (Informática)

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Detalles sobre esta monografía
Cómo citar
El propósito general de este libro es ser una guía para que el lector interesado en trabajar con redes neuronales artificiales (RNA), esté en capacidad de solucionar problemas propios de su disciplina usando esta técnica de la inteligencia computacional. La estructura del libro se concibe desde los tipos de aprendizaje, ya que es la característica más importante que poseen las redes neuronales artificiales y en ella radica su principal fortaleza para solucionar y adaptarse a diversos problemas. En este libro se encuentran contenidos teóricos básicos que lo dejarán preparado para afrontar el estudio de libros y artículos de carácter avanzado, acompañado de problemas resueltos que afianzan el saber y el saber hacer.
-
Resumen
-
Página Legal
-
Índice General
-
Introducción
-
Capítulo 1. Generalidades sobre redes neuronales artificiales.
-
Capítulo 2. Redes neuronales perceptron y adaline.
-
Capítulo 3. Percetron multicapa y algoritmo backpropagation
-
Capítulo 4. Red neuronal de hopfield
-
Capítulo 5. Mapas auto-organizados de kohonen
-
Capítulo 6. Red neuronal de base radial (RBF)
-
Bibliografía
Ingeniero Electricista de la Universidad del Valle. Máster en Tecnologías de la Información en Fabricación de la Universidad Politécnica de Madrid y Doctor en Ingeniería de la misma Universidad, en el área de Informática Industrial, España. Profesor Titular y Profesor Distinguido de la Universidad del Valle, Director del Grupo de Investigación Percepción y Sistemas Inteligentes (PSI). Autor de varios libros y artículos científicos, conferencista invitado en eventos nacionales e internacionales y profesor visitante en universidades internacionales. Ha trabajado proyectos con COLCIENCIAS, La Unión Europea, el CYTED, la Confederación Suiza y empresas nacionales. Áreas de Interés: Instrumentación Electrónica, Inteligencia Computacional y Robótica, SmartGrids.
Ingeniero electricista, Universidad del Valle, Magíster en automática, Universidad de Valle, Doctor en ingeniería, Universidad del Valle. Trabajó como profesor en la Universidad del Valle, Pontificia Universidad Javeriana y actualmente Universidad Autónoma de Occidente. Ha realizado diversidad de investigaciones en áreas como: Control automático, Aplicaciones de la inteligencia computacional, enseñanza del control automático y de la inteligencia computacional. Es miembro activo del grupo de investigación en Energías: GIEN.
[Barto 1983]
A.R. Barto, R.S. Sutton and C. W. Anderson, "Neuron like adaptive elements that can solve difficult learning control problems", IEEE transactions on Systems, Man, and Cybernetics. Vol. 13 No. 1983.
[Battiti 1992]
R. Battiti, "First and order methods for learning between steepest descent and Newton's method", Neural computation Vol. 4 No. 2 1992.
https://doi.org/10.1162/neco.1992.4.2.141
[Beal72]
Beale, E.M.L., "A derivation of conjugate gradients", in F.A. Lootsma, Ed., Numerical methods for nonlinear optimization, London: Academic Press, 1972.
[Bishop 1995]
Christopher M. Bishop. "Neural Networks for Pattern Recognition", Oxford University Press, USA; 1st edition, 1995.
[Bishop 2007]
Christopher M. Bishop. "Pattern Recognition and Machine Learning", Springer. 2007.
[Cybenko 1989]
G. Cybenko. "Approximation by superposition of a sigmoidal function", Math. of Control, Signals and Systems, Vol. 2 No.4 1989.
https://doi.org/10.1007/BF02551274
[Duda 2000]
Richard O. Duda, Peter E. Hart, David G. Stork. "Pattern Classification (2nd Edition)", Wiley-Interscience. 2000.
[Elman 1990]
J. Elman, "Finding Structure in time Cognitive", Science Vol. 14. 1990.
https://doi.org/10.1207/s15516709cog1402_1
[Fausett 1993]
Laurene V. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Prentice Hall; US Ed edition, 1993.
[FlRe64]
Fletcher, R., and C.M. Reeves, "Function minimization by conjugate gradients", Computer Journal, Vol. 7, 1964, pp. 149-154.
https://doi.org/10.1093/comjnl/7.2.149
[FoHa97]
Foresee, F.D., and M.T. Hagan, "Gauss-Newton approximation to Bayesian regularization", Proceedings of the 1997 International Joint Conference on Neural Networks, 1997, pp. 1930-1935.
[Foresee 1997]
F. D. Foresee and M. T. Hagan, "Gauss-newton approximation to bayesian regularization", In Proceedings of the 1997 International Joint Conference on Neural Networks, 1997.
[Freeman 1993a]
J. Freeman, D. Skapura, "Redes neuronales, Algoritmos, Aplicaciones y Técnicas de Programación", Editorial Addison-Wesley/Diaz de Santos, 1993.
[Freeman 1993b]
J. Freeman, D. "Simulating Neural Networks with Mathematica", Addison-Wesley, 1993.
[Hagan 1994]
M. T. Hagan and Menhaj M. B., "Training feedforward networks with the Marquardt algorithm". IEEE Trans. on Neural Networks, Vol. 5 No. 6, 1994.
https://doi.org/10.1109/72.329697
[Hagan 1996]
Martin T. Hagan, Howard B. Demuth, and Mark H. Beale, "Neural Network Design", PWS Publishing Company, 1996.
[Hagan 2008]
Martin T. Hagan, Howard B. Demuth, and Mark H. Beale, "MATLAB® Neural Networks Toolbox User's Guide V 6.0". The Mathworks Inc. 2008.
[Hassoun 1995 ]
Mohamad H. Hassoun "Fundamentals of Artificial Neural Networks", The MIT Press. 1995.
[Hastie 2003]
T. Hastie (Author), R. Tibshirani (Author), J. H. Friedman, "The Elements of Statistical Learning", Springer. 2003
[Haykin 1994]
S. Haykin, "Neural networks a Comprehensive Foundation", First Edition, Prentice Hall, 1994.
[Haykin 1999]
S. Haykin, "Neural networks a Comprehensive Foundation", Second Edition, Prentice Hall, 1999.
[Hebb 1949]
D. O. Hebb, "The Organization of Behavior", Wiley. 1949.
[Hilera 1996]
José Hilera y Victor Martínez. "Redes Neuronales Artificiales. Fundamentos, modelos y aplicaciones". Alfa Omega - Rama, 1996.
[Hinton 1989]
G. E. Hinton, "Connectionist learning procedures", Artificial Intelligence Vol. 40 1989.
https://doi.org/10.1016/0004-3702(89)90049-0
[Hopfield 1982]
J.J. Hopfield, "Neural networks and physical system with emergent collective computational abilities", Proceedings of the National Academy of Science, Vol. 79 1982.
https://doi.org/10.1073/pnas.79.8.2554
[Hopfield 1984]
J.J. Hopfield. "Neurons with graded response have collective computational properties like those of two-state neurons", Proceedings of the National Academy of Science, Vol. 81 1984.
https://doi.org/10.1073/pnas.81.10.3088
[Hornik 1989]
K. Hornik, "Multilayer feedforward networks are universal approximators", Neural Networks, No. 2, 1989.
https://doi.org/10.1016/0893-6080(89)90020-8
[Hunt 1991]
K. Hunt and D. Sbarbaro, "Neural Networks for Non-Linear Internal Model Control", IEE proceedings-D, vol. 138, No. 5. UK 1991.
https://doi.org/10.1049/ip-d.1991.0059
[Ienne 2005]
P. Ienne and G. Kuhn, "Digital Systems for Neural Networks", Digital Signal Processing Technology, volume CR57 of Critical Reviews Series, pages 314-45. SPIE Optical Engineering, Orlando, Fl. USA. 1995.
[Kecman 2001]
Vojislav Kecman. "Learning and Soft Computing. The MIT Press", 2001.
[Kohonen 2000]
Teuvo Kohonen, "Self Organizing Maps", Springer - Verlag, 2000.
https://doi.org/10.1007/978-3-642-56927-2
[Kosko 1987]
B. Kosko, "Adaptive bidirectional associative memory", Applied Optics Vol. 26. 1987.
https://doi.org/10.1364/AO.26.004947
[Kosko 1988]
B. Kosko, "Bidirectional associative memories", IEEE transactions on Systems, Man, and Cybernetics. Vol. 18 No.1 1988.
https://doi.org/10.1109/21.87054
[Kosko 1992]
B. Kosko, "Neural Networks and Fuzzy Systems", Prentice Hall 1992.
[LeCun 1998]
Y. LeCun, L. Bottou, G.B. Orr and K.-R. Muller, Efficient backprop, "Neural Networks-Tricks of the Trade", Springer Lecture Notes in Computer Sciences 1524, pp.5-50, 1998.
https://doi.org/10.1007/3-540-49430-8_2
[Lippman 1987]
R.P Lippman,., "An introduction to computing with neural nets," IEEE ASSP Magazine, 1987, pp. 4-22.
https://doi.org/10.1109/MASSP.1987.1165576
[Lippman 1989]
R.P Lippman,., "Pattern Classification using Neural Networks," IEEE Communication Magazine, 1989, pp. 47-64.
https://doi.org/10.1109/35.41401
[Looney 1997]
Carl G. Looney. "Pattern Recognition and Neural Networks, Theory and Algorithms for Engineers and Scientists", Oxford University Press, 1997.
[MacKay 1992a]
D. J. MacKay, "Bayesian interpolation", Neural Computation, Vol. 4, No. 3 1992.
https://doi.org/10.1162/neco.1992.4.3.415
[MacKay 1992b]
D. J. MacKay. "A practical bayesian framework for backpropagation networks", Neural Computation, Vol. 4, No. 3 1992.
https://doi.org/10.1162/neco.1992.4.3.448
[Masters 1993]
Timoty Masters, "Practical Neural Network Recipes in C++", Morgan Kaufmann, 1993.
https://doi.org/10.1016/B978-0-08-051433-8.50017-3
[Masters 1994]
Timoty Masters, "Signal and Image Processing with Neural Networks: A C++ Sourcebook", Wiley, 1994.
[Masters 1995]
Timoty Masters, "Advanced Algorithms for Neural Network: A C++ Sourcebook", John Wiley & Sons Inc 1995.
[Martín del Brío 2007]
Bonifacio Martín del Brío, Alfredo Sanz Molina, "Redes Neuronales y Sistemas Borrosos", Alfa Omega - Rama, 2007.
[McCulloch 1943]
W. McCulloch and W. Pitts "A logical calculus of the ideas immanent in nervous activity", Bulletin of mathematical Biophysics Vol. 5, 1948.
https://doi.org/10.1007/BF02478259
[Michie 1994]
D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds) "Machine Learning, Neural and Statistical Classification", Ellis Horwood. 1994.
[Minsky 1969]
M. Minsky and S. Papert, "Perceptrons", MIT Press. 1969.
[Moll93]
Moller, M.F., "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, Vol. 6, 1993.
https://doi.org/10.1016/S0893-6080(05)80056-5
[Nabney 2004]
Ian T. Nabney, "Netlab" Springer, 2004.
[Narendra 1990]
K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks", IEEE Trans. on Neural Networks, Vol. 1 No. 1 1990.
https://doi.org/10.1109/72.80202
[Neal 1996]
R. M. Neal, "Bayesian Learning for Neural Networks", Springer-Verlag, 1996.
https://doi.org/10.1007/978-1-4612-0745-0
[NgWi90]
Nguyen, D., and B. Widrow, "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights", Proceedings of the International Joint Conference on Neural Networks, Vol. 3, 1990, pp. 21-26.
[Norgaard 2000]
Norgaard, M., "Neural Networks for Modeling and Control of Dynamic Systems", Springer - Verlag, London. 2000.
[Park 1991]
J. Park and I. Sandberg, "Universal approximation using radial basis function networks", Neural Computation, No. 3, 1991.
https://doi.org/10.1162/neco.1991.3.2.246
[Pham 1995]
X. Pham, D. LIU. "Neural Networks for Identification, Prediction and Control", Springer-Verlag, London, UK, 1995.
https://doi.org/10.1007/978-1-4471-3244-8
[Powell77]
Powell, M.J.D., "Restart procedures for the conjugate gradient method", Mathematical Programming, Vol. 12, 1977, pp. 241-254.
https://doi.org/10.1007/BF01593790
[Principe 1999]
José C. Principe, Neil R. Euliano, W. Curt Lefebvre, "Neural and Adaptive Systems: Fundamentals through Simulations", Wiley, 1999
[Ripley 1996]
Brian D. Ripley, "Pattern Recognition and Neural Networks", Cambridge University Press, 1996
https://doi.org/10.1017/CBO9780511812651
[Rosenblatt 1961]
F. Rosenblatt, "Principles of Neurodynamcis", Spartan Press 1961.
[Rosenblatt 1958]
F. Rosenblatt "The Perceptron: A probabilistic model for information storage and organization in the brain". Psychological Review. Vol. 65 1958.
https://doi.org/10.1037/h0042519
[RuHi86a]
Rumelhart, D.E., G.E. Hinton, and R.J. Williams, "Learning internal representations by error propagation", Parallel Data Processing, Vol. 1, Cambridge, MA: The M.I.T. Press, 1986, pp. 318-362.
[Rumelhart 1986]
D. E. Rumelhart G. e Hinton and R. J. Williams, "Learning representations by back-propagating errors", Nature Vol 323 1986.
https://doi.org/10.1038/323533a0
[Rusell 1997]
Russell D. Reed, Robert J. Marks "II Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks", The MIT Press. 1999.
[Shepherd 1997]
A. Shepherd Second-Order, "Methods for Neural Networks", Springer-Verlag 1997.
https://doi.org/10.1007/978-1-4471-0953-2
[Vapnik 1995]
V. Vapnik, "The nature of Statistical Learning Theory", Springer Verkag. 1995.
https://doi.org/10.1007/978-1-4757-2440-0
[Vries 1992]
Vries B. and J. Principe, "The gamma model: A new neural networks model for temporal processing", Neural Network Vol 5., 1992.
https://doi.org/10.1016/S0893-6080(05)80035-8
[Widrow 1990]
Bernard Widrow and Hoff M. "30 years of adaptive neural networks: Perceptron, madaline and backpropagation", Proceedings of the IEEE, Vol. 78. No. 9, 1990.
https://doi.org/10.1109/5.58323
[Werbos 1990]
Paul Werbos, "Backpropagation through time: What it does and how do it", Proceeding IEEE, vol. 78, No. 10, Oct. 1990, pp 1550-1560.

